
Parallel Fenwick Tree
Tzu-Yen Tseng∗

Jim Shao∗
tzuyent@andrew.cmu.edu
chiatses@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Abstract
Parallel Fenwick Tree is an intricate data structure, and its unique
access patterns make it hard to parallelize. We implemented several
versions of Parallel Fenwick Trees with OpenMP and tested each
of them on Carnegie Mellon University’s GHC machines and Pitrs-
burgh Supercomputing Center’s Bridges-2 machines. Our Pure Par-
allelism for general workload achieves 6x speedup and our Model-
Parallel approach for BatchAdd optimizations reaches up to 11x
speedup on PSC machines.

Keywords
Fenwick Tree, Parallelism, OpenMP

1 Introduction
The Fenwick tree was first proposed in 1994[4]. It is a data struc-
ture optimized for range queries. Peter Su et al.[7] explored the
parallelism of this data structure when PRAM (Parallel Random
Access Machine) first appeared and concluded that it is not an easily
parallelizable data structure. As the NUMA architecture becomes
more popular in multiprocessor computers these days, different tree
parallelisms have been well studied. However, research on Fenwick
trees remains rare due to its highly optimized data structure for a
single thread, making parallelism nontrivial. Therefore, we would
like to propose several potential optimizations for this data struc-
ture, either with workload balancing or with memory-balanced
methods.

In Section 2, we discuss optimizations on general approaches to
handle all kinds of workload for the parallel Fenwick Tree. We con-
clude that accumulating Adds has great potential for optimizations.
In Section 3, we focus on the optimizations in BatchAdd. In Section
4, we pick out several designs with better potential for improvement
and design some experiments. In Section 5, we demonstrate our
experiment results and our observations. In Section 6, we conclude
our methodologies and future directions.

2 General Approaches
A Fenwick Tree usually contains 2 operations, add() and sum(). This
is equivalent to writes and reads, updates and queries. Therefore
we use these terms interchangeably A common workload would
be a series of writes with a few reads in the middle. We call this
the "general workload" in this paper. In this section, we propose
two main parallelism strategies to optimize the performance for
handling general workloads with a simple glance at performance
and potential trade-offs. All approaches throughout the research
are implemented in C++.

∗Both authors contributed equally to this research.

2.1 Serialized Fenwick Tree
Let’s first look at the original version of the Fenwick Tree. The
serial version of the tree follows the implementation of the CP-
Algorithm website [2]. This is the baseline of our measurement.
The pseudocode is provided as follows.
class FenwickTree {

int bits[N + 1];

void add(int x, int val) {
for (++x; x <= N; x += x & -x) {

bits[x] += val;
}

}

int sum(int x) {
int total = 0;
for (++x; x > 0; x -= x & -x) {

total += bits[x];
}
return total;

}
}

We can see from the pseudocode that the Fenwick Tree is al-
ready a very optimized data structure. Both the add() and sum()
operations are well optimized with bit operations. For the rest of
the approaches, we will propose different parallelism strategies to
beat the baseline. To ensure the correctness of our approaches, we
first define the correctness of the Parallel Fenwick Tree.

Definition 2.1. (Correctness) A Parallel Fenwick Tree is consid-
ered correct for all the query outputs; they should be equivalent to
the outputs from a Serialized Fenwick Tree.

We mainly focus on task parallelism to achieve performance
speed-up in this section.

2.2 Lazy Synchronization
A common approach mentioned in the paper on tree parallelism [1]
is to delay all updates until a query is shown. The delay of execution
can help us better utilize parallelism since each update can be done
by only one thread. However, the query function requires all threads
to be synchronized to get the most updated output. The pseudocode
is described below:
// Fenwick Tree is an atomic array
// Utilize a sliding window to batch all writes before a read
left = 0;
right = 0;



Tzu-Yen and Jim

while (right < workload.size()) {
if (workload[right] == operation.read) {

#pragma omp parallel
for (i = left; i < right; i++) {

tree.add(workload[i]);
}
value = tree.query(workload[right]);
left = right + 1;

}
}

This approach can achieve up to 1.5x speedup when query opera-
tions are less than 0.1% in the overall workload. As query operations
grow in workload, the limitations of the synchronization barrier
start to overwhelm the benefits of distributing write tasks.

Query Percentage Small Array Medium Array Large Array
0% 0.57x 1.07x 1.50x
0.1% 0.16x 1.01x 1.46x
1% 0.52x 0.28x 1.36x
5% 0.16x 0.64x 1.25x

Table 1: Lazy Synchronization Speedup (batch size: 65536,
number of batches: 1024, thread count: 8)

2.3 Task Parallelism
The bottleneck of the Lazy Sync method lies in the synchronizations
for each query. As the query frequency grows, the performance
becomes extremely bad due to more synchronization barriers, lim-
iting the chance of parallelizing tasks. To minimize the thread
synchronizations, we eagerly look for a method which minimizes
the number of synchronizations across threads.

Since we can parallelize the write workloads to all threads, can
we also parallelize all the read workloads to all threads? If each
thread receives the same order of update and query requests, the
result will be equivalent to the sequential operation.

Definition 2.2. (Partial Execution) A thread in the Task Paral-
lelism approach will receive the partial operations of the whole
workload. The partial operations are in the same partial order as
the original workload.

Theorem 2.3. (Partial Ordering achieves Correctness) For each
thread having its local Fenwick Tree and follows partial execution,
correctness is achieved as long as all queries are distributed to all
threads, and each update is handled by exactly one thread.

That is, we need a way to distribute an update to any of the
worker threads and broadcast each query to all worker threads to
guarantee the correctness.

2.3.1 Centralized Scheduler. Inspired by the Morsel-driven paral-
lelism paper [5], we decided to build a centralized task scheduler
dedicated to distribute all operations. For a write operation, the
scheduler will allocate the task to a thread in a round-robin manner.
For a read request, the read is broadcasted to all worker threads.
Each worker thread has its own tree to which they will update. The
scheduler has a dedicated atomic array for each thread to write the

partial query result. This is similar to a reduce function. With this
implementation, we minimize thread synchronizations to only the
atomic operations when writing the result.

class CentralizedScheduler {
submit_add(index, value) {

// round-robin
worker_id = counter++ % worker_num;
lock(worker_id);
queues[worker_id].push(task);
unlock(worker_id);

}

submit_query(index) {
// broadcast
for (worker_id : workers) {

lock(worker_id);
queues[worker_id].push(task);
unlock(worker_id);

}
}

worker_loop(worker_id) {
while (True) {

lock(worker_id);
task = queue.pop();
unlock(worker_id);
if (task.op == "add") {

local_tree.add(task.index, task.value);
} else {

res = local_tree.sum(task.index);
global_res[task.position].fetch_add(res);
}

}
}

}

This method achieves only a 0.4x speedup and becomes worse as
the thread count grows. Since when implementing the task sched-
uler logic, we have dedicated queues for each thread, and each
queue requires a lock. The time taken for locking/unlocking actions
greatly exceeds the benefits of not synchronizing with others.

2.3.2 Lock-Free Queue Scheduler. We profiled the time the central-
ized scheduler spent distributing tasks, and it takes roughly 99% of
the total computation time for a batch. Therefore, we assume that
the locks on the queues are too heavy for this data structure. We
changed locking queues to lock-free queues [3]. The performance
boosts to 1.3x speedup in a 4 thread scenario but drops to only
1x speedup when the thread count reaches 8. Therefore, we still
believe that this is not scalable enough.

2.3.3 Pure Parallelism. In the end, we decide to remove the cen-
tralized scheduler, let each thread go through the whole operation
sequence, and decide if they are taking the update task in the round-
robin manner. All threads have to take every query task. For writing
back query results, there is a 2-dimensional array to store the par-
tial query result from each worker thread. That is, each thread



Parallel Fenwick Tree

can directly write to the global result array without any locking
mechanisms.

This achieves a 1.3x speedup in a 4 threads scenario and around
1.3x speedup in an 8 threads scenario. This method achieves similar
speedup even if the query percentage is large, and is also more
scalable than the Lock-Free Queue Scheduler.

2 4 8
Centralized 0.39x 0.32x 0.12x
Lock-Free 0.73x 1.31x 1.02x
Pure Parallelism 0.96x 1.32x 1.31x

Table 2: Task Parallelism Speedup (batch size: 262144, array
size: 16777215)

The Pure Parallelism design is very throughput-oriented. We do
not guarantee that the results for the queries will be ready until all
the work in the whole batch is finished. This is a trade-off between
the query latency and the overall throughput.

From the observations in Table 1 and Table 2, we can see that
there is a potential for optimization when the update functions are
the majority. This is also a common case in real-world applications
in Spatial Indexing[6]. Therefore, we decide to investigate more
into the BatchAdd optimizations.

3 Batch Add Optimizations
When we accumulate multiple Adds, we can come up with more
efficient algorithms to distribute Adds to worker nodes with some
load balancing tweaks.

3.1 Fine-grained Lock
The most intuitive approach is to add a lock for each element in
the internal array. The pseudocode is listed as follows:

class FenwickTree {
// ...
lock_t locks[N + 1];

void add(int x, int val) {
++x;
for (; x <= N; x += x & -x) {

locks[x].lock();
bits[x] += val;
locks[x].unlock();

}
}

void batchAdd(Op ops[B]) {
#pragma omp parallel for
for (auto &op : ops) {

add(op.index, op.val);
}

}
// ...

}

For this approach to work, we introduce a function batchAdd
to the Fenwick tree, so we can process and parallelize a batch of
inputs. Although performance degradation can be expected due
to the locking overhead and cache coherency, this approach is
still included for comparison. Testing on GHC shows roughly a
0.13x slowdown when running on one thread with default settings,
indicating significant locking overhead. Also, the program does not
show a performance gain when running with more threads.

3.2 Coarser-grained Lock
To lower the locking overhead, we implemented the add function
with a coarser-grained lock mechanism as follows.

class FenwickTree {
// ...
lock_t locks[(N + L) / L)];

void add(int x, int val) {
++x;
// Update the tree
locks[x / L].lock();
int prev_x = x;
for (; x <= N; x += x & -x) {

if (prev_x / L != x / L) {
locks[prev_x / L].unlock();
locks[x / L].lock();
prev_x = x;

}
bits[x] += val;

}
locks[prev_x / L].unlock();

}

// ...
}

However, after exploring various lock granularities, the program
still has a slowdown of at least 0.18x on GHC machines when
running with multiple threads. To identify the reasons for slowing
down, we ran OpenMP on sequential version without any locking
mechanism. Although this might provide invalid query results, it is
the easiest way to observe the influence of cache coherency. This
approach still has 0.75x slowdown compared to serial version, which
means the locking approach can never work. Further analysis is
conducted on GHC via perf.

Metrics Serial 4 threads without lock
L1-dcache-loads 3.23 · 109 3.42 · 109
L1-dcache-load-misses 8.66 · 108 1.36 · 109
L1-dcache-stores 2.75 · 109 2.70 · 109
LLC-loads 5.56 · 108 6.76 · 108
LLC-load-misses 6.89 · 106 3.48 · 106
LLC-stores 2.47 · 108 8.47 · 108
LLC-store-misses 6.28 · 105 4.86 · 105

Table 3: Perf results of Serial and 4 threads without lock



Tzu-Yen and Jim

Based on cache profiling, the L1-dcachemiss rate of serial version
and parallel version is 26.85% and 39.51%, respectively. In addition,
the number of LLC stores in the parallel version is approximately
three times higher than in the serial version. Thus, to reach an
effective parallelism, it is important to remove or at least lower the
memory contention among multiple threads toward the internal
array.

3.3 Model Parallelism
3.3.1 Fixed-size partitioning. In contrast to the fine-grained lock
approach that uses data parallelism, we attempted to implement
model parallelism by partitioning the internal array into 𝑝 roughly
equal-sized subarrays, where 𝑝 is the number of threads (Figure 1a).
Each subarray is assigned to a thread, and each thread would only
modify the assigned subarray. Similar to locking approaches, we
focused on parallelizing batchAdd instead of add to lower the
overhead of launching threads. The pseudocode of the function
batchAdd to demonstrate the idea is provided as follows.
void batchAdd(Op ops[B]) {

#pragma omp parallel
{

int t = get_thread_id();
auto [lower, upper] = ranges[t];

for (auto &op : ops) {
int x = op.index + 1;
int val = op.value;

for (++x; x < upper; x += x & -x) {
if (x >= lower)

bits[x] += val;
}

}
}

}

By assigning each subarray to a single thread, there would only
be some false sharing at the boundary of each subarray, highly
reduce the cache contention across threads. In addition, running
with multiple threads can utilize more L1 caches as the program is
running on multiple cores. As shown in Table 4, the L1-dcache miss
rate of the Model Parallelism approach is 15.67%, which is even
lower than the serial version.

Metrics Serial Model Parallelism
L1-dcache-loads 3.23 · 109 3.78 · 109
L1-dcache-load-misses 8.66 · 108 5.93 · 108
L1-dcache-stores 2.75 · 109 2.69 · 109
LLC-loads 5.56 · 108 3.05 · 108
LLC-load-misses 6.89 · 106 1.49 · 106
LLC-stores 2.47 · 108 2.11 · 107
LLC-store-misses 6.28 · 105 1.43 · 105

Table 4: Perf results of model parallelism with 4 threads

As shown in Table 5, this approach (fixed-size without skipping)
gained some speedup compared to the serial version, which takes

roughly 1450 ms under the same settings. The purpose of Table 5 is
to illustrate the intuition behind the development of our approaches.
More robust experiments are presented in Sections 4 and 5.

However, an issue is presented in this approach, which limits
the speedup. Even though a range is assigned to each thread, each
of them still follows x += x & -x until the index located in the
range assigned is reached.

To address the issue, the following code is run before iterating
through the loop. This series of bit operations computes the smallest
index derived from x that lies within the target range in𝑂 (1). After
applying this optimization, the program has a decent speedup with
2 threads on GHC (Table 5). However, by profiling the runtime of
each thread, we found out that the workload is not balanced among
threads, which becomes more obvious when the number of threads
increases (Figure 2a).
if (x < lower) {

auto highest_diff_bit
= (1ULL << 63) >> __builtin_clzll(x ^ lower);

x |= highest_diff_bit;
x &= ~(highest_diff_bit - 1);

if (x < lower) {
x += x & -x;

}
}

(a) Model-Parallel Fixed-Size (b) Model-Parallel Access-Aware

(c) Model-Parallel Semi-Static

Figure 1: Partitioning methods with 2 threads

3.3.2 Access-aware Partitioning. Our first attempt to address the
workload imbalance is to analyze the access probability of each
element based on the access patterns of the Fenwick tree, assum-
ing uniformly random inputs. Then, the array is partitioned into 𝑝
subarrays with roughly equal access probability, which would dis-
tribute the write operations equally across all threads. For example,
in Figure 1b, the numbers indicate how many times each element
would be accessed if each index is added once. In this case, the total
access counts of the first partition and the second partition are 9
and 11, respectively. However, based on the profiling results, this
approach does not lower the workload imbalance between threads
(Figure 2b).

Therefore, the workload depends not only on the access counts
of the subarray but also on how accesses are distributed within the
subarray. For example, even if both subarrays have the same access
counts, one might have accesses concentrated on a single element,



Parallel Fenwick Tree

(a) Model-Parallel Fixed-Size (b) Model-Parallel Access-Aware

(c) Model-Parallel Semi-Static

Figure 2: Workload of Partitioning Methods

while the other’s accesses are distributed across multiple elements.
In this case, the first subarray may complete the write operations
more quickly due to a more cache-friendly access pattern.

3.3.3 Semi-static Partitioning. It is hard to analyze the influence
of cache and statically split the internal array based on that. Thus,
instead of deciding the ranges of subarrays when initializing the
Fenwick tree, we tune the ranges of subarrays after each batch.
There are several ways to do so. One possible implementation is to
calculate the execution time of each thread within a batch, allow-
ing us to adjust the ranges accordingly. While this solution could
estimate the workload on each thread precisely, it also introduces
additional overhead from calling the timing function and adjusting
the ranges after each batch.

Another solution is tomake use of theOpenMP directives #pragma
omp single nowait after the batch. The pseudocode is shown as
follows.

void batchAdd(Op ops[N]) {
#pragma omp parallel
{

int t = omp_get_thread_num();
auto [lower, upper] = ranges[t];

#pragma omp barrier
for (auto &op : ops) {

// operations same as previous
// model-parallel approaches

}

#pragma omp single nowait
{

enlarge_range(ranges, t);
}

}
}

The block of the directive singlewould be run by the thread that
first reaches that block. That is, the function enlarge_rangewould
be run by the thread with less workload. The option nowait is used
so that the first thread can proceed in parallel when other threads
are still dealing with add operations, reducing the re-partitioning
overhead. Note that #pragma omp barrier should be added to
ensure the correctness when reading ranges and the accuracy
when estimating the execution time. To minimize overhead, the
function enlarge_range simply enlarges the assigned range and
shrinks the neighboring ranges.

Based on profiling results, the semi-static approach highly re-
duced the difference in execution time among threads (Figure 2c).
However, it still introduces some overhead, which might explain
why the overall execution time doesn’t improve a lot compared to
fixed-size partitioning (Table 5). Additional results will be presented
and discussed in later sections.

Approaches p = 2 p = 4 p = 8
Fixed-size without skipping 1120 1052 1001
Fixed-size 741 559 474
Access-aware 731 581 520
Semi-static 725 541 462
Aggregate 898 659 519

Table 5: Execution time (milliseconds, with batch size: 65536,
number of batches: 1024, and array size: 1048575)

3.4 Model Parallelism with Aggregation
So far, we have discussed fixed-size partitioning, access-aware parti-
tioning, and semi-static partitioning for model-parallel approaches.
However, all of those approaches focus on optimizing the parti-
tioning algorithm. In this subsection, instead of processing each
input in a batch one by one, we developed an approach where each
thread would "mark" the smallest involved index for each input
on a local array. Then, the values would be propagated to the full
subarray all at once. The overall logic is presented in the following
pseudocode.
int bits[N + 1];
int local_bits[N + 1];

void batchAdd(Op ops[B]) {
#pragma omp parallel
{

for (auto &op : ops) {
x = find_smallest_index(x, lower, upper);
if (x < upper)

local_bits[x] += val;
}

for (x = lower; x < upper; ++x) {
int next_x = x + (x & -x);

if (next_x < upper) {
local_bits[next_x] += local_bits[x];

}



Tzu-Yen and Jim

bits[x] += local_bits[x];
local_bits[x] = 0;

}
}

}

Compared to previous approaches, this approach has a more
predictable pattern. The time complexity of the algorithm is 𝑂 (𝐵 +
𝑁 /𝑃), where 𝐵, 𝑁 , and 𝑃 are batch size, array size, and the num-
ber of threads, respectively. The second loop primarily consists of
sequential reads and writes, leading to better memory access effi-
ciency. Although the approach does not have a great performance
under current settings (Table 5), we expect it to have better paral-
lelism with a higher thread count. More results will be discussed in
the later sections.

4 Experiments
We have implemented several algorithms and we only pick a few
ones with potentially good results to do the experiments.

4.1 Experimental Setup
The Fenwick tree and microbenchmarking code are written in C++,
which is hosted on GitHub1. The microbenchmarking is imple-
mented to test various batch sizes, array sizes, and numbers of
batches. The number of batches is adjusted to target a runtime of
roughly 10 seconds, reducing the impact of timing overhead and
improving measurement accuracy.

All the experiments are run on Carnegie Mellon University’s
GHC machine and Pittsburgh Supercomputing Center’s bridges-2.
The specifications of both kinds of machines are listed below:

4.1.1 GHC Machines.

• CPU: Intel Core i7-9700
– Cores: 8 cores
– Threads: 8 threads (Note: This model does not have

Hyper-Threading)
– Clock Speed: 3.00 GHz base, up to 4.70 GHz boost

• Cache:
– L1 Data (per core): 32 KB
– L1 Instruction (per core): 32 KB
– L2 (per core): 256 KB
– L3 (shared): 12 MB (Intel Smart Cache)

• RAM: 16 GB
• Operating System: Ubuntu 22.04
• Compiler: GCC 11.4.0 with -O3 -fopenmp

4.1.2 Bridges-2 RM Nodes.

• CPU: AMD EPYC 7742
– Cores: 64 cores
– Threads: 128 threads (SMT enabled)
– Clock Speed: 2.25 GHz base, up to 3.40 GHz max boost

• Cache:
– L1 Data (per core): 32 KB
– L1 Instruction (per core): 32 KB
– L2 (per core): 512 KB
– L3 (shared): 256MB (Shared across coreswithin chiplets)

1https://github.com/EricTsengTy/ParallelFenwickTreeImpl

• RAM: 256 GB
• Operating System: Red Hat Linux
• Compiler: GCC 13.2.1 with -O3 -fopenmp

Note that the 256 MB of L3 cache is not a single shared shared
across all cores. On Bridges-2, every 4 cores within the same Core
Complex (CCX) share a 16 MB L3 cache. As there are 16 CCXs (64
cores) per node, the total L3 cache amounts to 256 MB.

4.2 Input Generator
An input generator generates random operations for our Fenwick
tree implementations. The sampling frequency of add and query
is based on the query frequency specified. For instance, if query
frequency is set to 0%, only add operations are generated. The index
of the input is uniformly sampled over all valid indices defined by
the array size of the Fenwick tree. Since the value of an operation
doesn’t impact the speed, we simply sample a random integer value
between 1 and 100.

5 Results
5.1 Impact of Query Frequency on General

Approaches
From Fig. 3, we can observe that Pure Parallelism is more resilient
to constant queries compared to the Lazy Sync method in all three
different array sizes. This is because the Lazy Synchronization
method accumulates all updates until a query is met, and constant
queries limits the accumulation for parallelism. Meanwhile, queries
in Pure Parallelism do not cause any synchronization barriers as
each thread writes the result to independent cells in the global
result array.

Also, we can observe that when the query frequency is close
to 0, the performance of Lazy Scheduling mostly exceeds the Pure
Parallelism method. This is also due to the fact that the parallelism
is nearly linear to the number of threads as the query frequency
is very low. Yet Pure Parallelism still suffers from the overhead of
letting all threads read through all workloads. This observation
encouraged us to further work on optimizing batched adds for this
scenario.

5.2 Impact of Array Size on Speedup
Three sets of parameters are used to study the relationship between
speedup and array size. The array sizes are selected based on the
cache hierarchy of the GHCmachines. The first array size, 4095, fits
within the L1 cache; the second, 2,097,151, fits within the shared
L3 cache; and the third, 16,777,215, fits only in RAM. Note that the
internal array in our implementation uses the type int, so those
three array sizes correspond to 16KB, 8MB, and 64MB, respectively.
The batch size is fixed at 262,144. The results are presented in
Figure 4 and 5.

5.2.1 General Optimizations. For general approaches, query fre-
quency is set to 0 to provide a more fair comparison with the
BatchAdd optimizations.

Pure Parallelism achieves great speedup in both small arrays
that can fit in L1 cache entirely and large arrays that can only fit in
RAM. For small arrays, Pure Parallelism performs better than the
sequential one due to near-linear parallelism with low overhead

https://github.com/EricTsengTy/ParallelFenwickTreeImpl


Parallel Fenwick Tree

Figure 3: Speedup comparison versus Query Frequency

and avoiding excessive cache coherency traffic at the same time.
For large arrays, the overhead of letting all threads iterate through
all operations decreases as the total memory accesses increases,
which therefore lead to at most 6x speedup with 128 threads.

Lazy Synchronization has a performance grow as the array size
become larger. This is because as the array size grows, the number
of memory access per operation grows and therefore the overhead
of the OpenMP framework is relatively reduced. There is also a
performance drop when the array size is small; this is due to the
excessive cache contention and the overhead from the atomic array
operations.

• GHC: Pure Parallelism suffers from a performance drop
from 4 threads to 8 threads due to the fact that the mem-
ory consumption from all local Fenwick Trees exceeds the
L3 cache; therefore, constantly evicting and loading cache
lines from L3 and RAM significantly reduced the perfor-
mance. The rest of the results are expected from the general
approaches.

• Bridges-2: We can observe that there is usually a perfor-
mance drop when thread count reaches 8 or 16, this might
be accounted to the CPU design from the PSC machines.
AMD EPYC 7742 groups 4 cores into 1 CCX, and communi-
cation between CCXs are slower than within a CCX. How-
ever, when the number of threads surpasses 32, the benefits
of parallelism overwhelms the impact on this, and therefore
the speedup grows again.

5.2.2 BatchAdd optimizations. Since the BatchAdd optimizations
target a more limited use case, it generally performs better than the
two general approaches. The Model-Parallel Aggregate approach
has different characteristics compared to the other three, so they
are discussed separately.

Model-Parallel Fixed-Size, Access-Aware, and Semi-Static ap-
proaches have a better speedup with medium arrays compared to
the other two on GHC Machines. The poor speedup with small
arrays is related to the limitation of the algorithms. Our approach

benefits from multiple threads only when an update modifies mul-
tiple indices across different partitions, which becomes less likely
when the array size is small. On the other hand, a different reason
explains the poor speedup of these approaches when the array size
is too large. When the array size exceeds the L3 cache, many reads
and writes on the internal array must access RAM. As a result, the
L3 cache miss rate grows from 3% to around 50% when the array
size changes from 2,097,151 to 16,777,215. As the BatchAdd opera-
tion has low arithmetic intensity, the high miss rate makes RAM
access a bottleneck. Thus, our approaches achieve poor speedup
due to the limited bandwidth of RAM.

The main difference when running on Bridges-2 is that it still
reaches great performance with the large array. This could be re-
lated to the larger L3 cache size on Bridges-2. It has at most 256 MB
of L3 cache when fully utilized, which is enough to accommodate
the entire array. Without being limited by the bandwidth, these
approaches can reach at most 11x speedup on Bridges-2.

The Model-Parallel Aggregate approach has very different be-
haviors when the array size grows. With a small array, the approach
cannot benefit from adding more threads, as the runtime is dom-
inated by the batch size. In addition, adding more threads might
even hurt performance by increasing overhead and communication
costs. However, the approach achieves great speedup in other cases.
It outperforms other approaches with medium and large arrays on
the Bridges-2 machines. As mentioned in Section 3.4, the second
loop of the approach consists almost entirely of sequential reads
and writes, reducing memory overhead. This may explain its supe-
rior performance with larger arrays and higher thread counts. More
analysis of the Model-Parallel Aggregate approach is provided in
the next section.

5.3 Impact of Batch Size on Speedup of
Batch-Add function

The Batch-Add function is introduced to lower the overhead of
launching threads and eliminate the need to maintain consistency
between updates and queries. To study the relationship between
batch size and speedup, we run experiments on all Model-Parallel
approaches with various batch sizes. In this set of experiments,
the array size and number of threads is fixed at 2097151 and 4. In
addition, all the speedup is computed relative to the serial Fenwick
Tree mentioned in Section 2.1.

In Figure 6, the speedup of Model-Parallel Fixed-Size, Access-
Aware, and Semi-Static approaches improves as the batch size grows
and quickly converges when the batch size exceeds 1024. The di-
minishing effect is expected, as the OpenMP overhead accounts for
a smaller portion of runtime as the batch size increases.

On the other hand, theModel-Parallel Aggregate approach shows
poor speedup when the batch size is too small (Figure 6). This
is because, compared to the serial version’s time complexity of
Batch-Add, which is 𝑂 (𝐵 lg𝐵), the Model-Parallel Aggregate ap-
proach has a time complexity of 𝑂 (𝐵 + 𝑁 /𝑃). When 𝑁 /𝑃 ≫ 𝐵,
although the approach scales well when the number of threads in-
creases, it still has poor speedup due to the algorithm’s limitations.
However, when 𝑁 /𝑃 ≪ 𝐵, although the Model-Parallel Aggregate
approach runs significantly faster than the serial version, it does
not scale well because the runtime is dominated by the batch size



Tzu-Yen and Jim

(a) Array Size = 4095

(b) Array Size = 2097151

(c) Array Size = 16777215

Figure 4: Speedup comparison for different approaches across
threads for various array sizes on GHC.

(a) Array Size = 4095

(b) Array Size = 2097151

(c) Array Size = 16777215

Figure 5: Speedup comparison for different approaches across
threads for various array sizes on Bridges-2.



Parallel Fenwick Tree

𝐵 (Table 6). Thus, the approach scales well only when 𝑁 /𝑃 ≈ 𝐵,
as observed in Figure 4b (with 𝑁 = 221 − 1, 𝐵 = 218, 𝑃 = 23) and
Figure 5c (with 𝑁 = 224 − 1, 𝐵 = 218, 𝑃 = 26).

Approach p = 1 p = 2 p = 4 p = 8
Serial 447.696 x x x
Model-Parallel Aggregate 51.262 69.824 85.919 95.536

Table 6: Execution Time (microseconds) of Model-Parallel
Aggregate with array size = 2097151 and batch size = 16777216
on GHC

Figure 6: Speedup comparison for different approaches across
threads for various batch sizes

Figure 7: Speedup comparison for Model-Parallel Aggregate
across threads for various batch sizes

6 Conclusion
The effectiveness of Parallel Fenwick Tree optimizations heavily
depends on workload characteristics and access patterns—there
is no one-size-fits-all solution. It is both workload-dependent and
machine-dependent. One should design the benchmarks based on
the required workload and run on their machines to really test out
which algorithm works better.

For general workload algorithms, Pure Parallelism excels in sce-
narios with more randomly distributed update/query operations,
offering better performance than Lazy Synchronization. Lazy Syn-
chronization shows greater potential for optimization in workloads
with mostly updates. Also, optimizations on general apporaches
only work well when the array size is either small enough to fit in
the L1 cache or big enough to only fit in RAM. They also demon-
strate different performance characteristics in GHC and PSC ma-
chines. We conclude that machine speculations should also be con-
sidered when choosing the right algorithm.

When batched additions (BatchAdd) are feasible, Model Paral-
lelism can achieve superior speedups, outperforming general ap-
proaches. However, no single approach consistently outperforms
the others. A hybrid approach may be implemented in practice.
When 𝐵 ≈ 𝑁 /𝑃 , the Model-Parallel Aggregate achieves better
speedup compared to the others. When the array size is much
smaller than the batch size (𝑁 ≪ 𝐵), the single-thread Model-
Parallel Aggregate approach may be the fastest. In all other cases,
Model-Parallel Semi-Static is likely the best choice due to its well-
balanced workload.

For future work, we would like to combine the lazy Synchroniza-
tion algorithm with Model-Parallelism. We believe that this can
help Lazy Sync to achieve an even higher speedup.

References
[1] Guy Blelloch, Daniel Ferizovic, and Yihan Sun. 2022. Joinable Parallel Balanced

Binary Trees. ACM Trans. Parallel Comput. 9, 2, Article 7 (April 2022), 41 pages.
doi:10.1145/3512769

[2] CP-Algorithms. 2024. Fenwick Tree (Binary Indexed Tree). https://cp-algorithms.
com/data_structures/fenwick.html

[3] Cameron Desrochers. 2024. concurrentqueue: A fast multi-producer, multi-
consumer lock-free concurrent queue for C++. https://github.com/cameron314/
concurrentqueue.

[4] Peter M. Fenwick. 1994. A new data structure for cumulative frequency tables.
Softw. Pract. Exper. 24, 3 (March 1994), 327–336. doi:10.1002/spe.4380240306

[5] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-core
age. In Proceedings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing
Machinery, New York, NY, USA, 743–754. doi:10.1145/2588555.2610507

[6] Jens Schneider and Peter Rautek. 2017. A Versatile and Efficient GPU Data
Structure for Spatial Indexing. IEEE Transactions on Visualization and Computer
Graphics 23, 1 (2017), 911–920. doi:10.1109/TVCG.2016.2599043

[7] Peter Su and Scot Drysdale. 1992. Building Segment Trees in Parallel. Technical
Report PCS-TR92-184. Dartmouth College, Computer Science Technical Report.
https://digitalcommons.dartmouth.edu/cs_tr/78

https://doi.org/10.1145/3512769
https://cp-algorithms.com/data_structures/fenwick.html
https://cp-algorithms.com/data_structures/fenwick.html
https://github.com/cameron314/concurrentqueue
https://github.com/cameron314/concurrentqueue
https://doi.org/10.1002/spe.4380240306
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1109/TVCG.2016.2599043
https://digitalcommons.dartmouth.edu/cs_tr/78

	Abstract
	1 Introduction
	2 General Approaches
	2.1 Serialized Fenwick Tree
	2.2 Lazy Synchronization
	2.3 Task Parallelism

	3 Batch Add Optimizations
	3.1 Fine-grained Lock
	3.2 Coarser-grained Lock
	3.3 Model Parallelism
	3.4 Model Parallelism with Aggregation

	4 Experiments
	4.1 Experimental Setup
	4.2 Input Generator

	5 Results
	5.1 Impact of Query Frequency on General Approaches
	5.2 Impact of Array Size on Speedup
	5.3 Impact of Batch Size on Speedup of Batch-Add function

	6 Conclusion
	References

